Quasi-real normal matrices and eigenvalue pairings
نویسندگان
چکیده
منابع مشابه
The inverse eigenvalue problem for symmetric quasi anti-bidiagonal matrices
In this paper we construct the symmetric quasi anti-bidiagonal matrix that its eigenvalues are given, and show that the problem is also equivalent to the inverse eigenvalue problem for a certain symmetric tridiagonal matrix which has the same eigenvalues. Not only elements of the tridiagonal matrix come from quasi anti-bidiagonal matrix, but also the places of elements exchange based on some co...
متن کاملHardware architectures for eigenvalue computation of real symmetric matrices
Computation of eigenvalues is essential in many applications in the fields of science and engineering. When the application of interest requires the computation of eigenvalues of high throughput or realtime performance, a hardware implementation of an eigenvalue computation block is often employed. The problem of eigenvalue computation of real symmetric matrices is focused upon. For the general...
متن کاملOn the Inverse Eigenvalue Problem for Real Circulant Matrices
The necessary condition for eigenvalue values of a circulant matrix is studied It is then proved that the necessary condition also su ces the existence of a circulant matrix with the prescribed eigenvalue values Introduction An n n matrix C of the form C c c cn cn c c cn cn cn c cn c c cn c is called a circulant matrix As each row of a circulant matrix is just the previous row cycled forward on...
متن کاملAnalysis of Eigenvalue Bounds for Real Symmetric Interval Matrices
In this paper, we present several verifiable conditions for eigenvalue intervals of real symmetric interval matrices overlapping or not overlapping. To above cases, two new methods with algorithms for computing eigenvalue bounds of real symmetric matrices are developed. We can estimate eigenvalue bounds moving away the assumption that two intervals containing two eigenvalues of real symmetric i...
متن کاملOn the nonnegative inverse eigenvalue problem of traditional matrices
In this paper, at first for a given set of real or complex numbers $sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2003
ISSN: 0024-3795
DOI: 10.1016/s0024-3795(02)00736-x